Complex optical constants on a subwavelength scale.
نویسندگان
چکیده
Optical phase contrast has for the first time been observed on a nanometer scale, with a near-field microscope of scattering type that maps the complete optical field of amplitude and phase. Backed by quasielectrostatic theory, we demonstrate the significance and experimental accessibility of even complex optical constants on a subwavelength scale. Further, our method can separate the near-field response from background artifacts and thus is expected to enable nanoscale optical mapping of even topography-rich objects such as resonant clusters and macromolecules.
منابع مشابه
Flatland Photonics: Circumventing Diffraction with Planar Plasmonic Architectures
On subwavelength scales, photon-matter interactions are limited by diffraction. The diffraction limit restricts the size of optical devices and the resolution of conventional microscopes to wavelength-scale dimensions, severely hampering our ability to control and probe subwavelength-scale optical phenomena. Circumventing diffraction is now a principle focus of integrated nanophotonics. Surface...
متن کاملTransporting an Image through a Subwavelength Hole.
The manipulation of optical waves in the subwavelength scale is limited by diffraction. In the vicinity of a narrow aperture, the amplitude of the electric field is approximately uniform and the transmissivity is extremely low. Here we show that despite these fundamental constraints it may be possible to transport and redirect a complex electromagnetic image through a tiny subwavelength hole wi...
متن کاملTime-reversing a monochromatic subwavelength optical focus by optical phase conjugation of multiply-scattered light
Due to its time-reversal nature, optical phase conjugation generates a monochromatic light wave which retraces its propagation paths. Here, we demonstrate the regeneration of a subwavelength optical focus by phase conjugation. Monochromatic light from a subwavelength source is scattered by random nanoparticles, and the scattered light is phase conjugated at the far-field region by coupling its ...
متن کاملSubwavelength metal-optic semiconductor nanopatch lasers.
We report on near infrared semiconductor nanopatch lasers with subwavelength-scale physical dimensions (0.019 cubic wavelengths) and effective mode volumes (0.0017 cubic wavelengths). We observe lasing in the two most fundamental optical modes which resemble oscillating electrical and magnetic dipoles. The ultra-small laser volume is achieved with the presence of nanoscale metal patches which s...
متن کاملOptical characterization of subwavelength-scale solid immersion lenses
We present the fabrication and optical characterization of nano-scale solid immersion lenses (nano-SILs) with sizes down to a subwavelength range. Submicron-scale cylinders fabricated by electron-beam lithography (EBL) are thermally reflowed to form a spherical shape. Subsequent soft lithography leads to nano-SILs on transparent substrates, i.e. glass, for optical characterization with visible ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 85 14 شماره
صفحات -
تاریخ انتشار 2000